Superoxide Anion, Uncoupling Proteins and Alzheimer’s Disease

نویسندگان

  • Zhaofei Wu
  • Yan Zhao
  • Baolu Zhao
چکیده

Superoxide anion is the first generated reactive oxygen species (ROS) after oxygen enters living cells. It was once considered to be highly deleterious to cell functions and aging. Therefore, antioxidants were suggested to prevent aging and degenerative diseases. However, superoxide signaling has been shown in many physiological responses such as transcriptional regulation, protein activation, bioenergy output, cell proliferation and apoptosis. The uncoupling proteins (UCPs) are a family of mitochondrial anion-carrier proteins located in the inner mitochondrial membrane and are considered to reduce the generation of superoxide anion through the mitochondrial mild uncoupling. UCPs are important in prevention of mitochondrial excessive generation of ROS, transfer of mitochondrial substrates, mitochondrial calcium uniport and regulation of thermogenesis. Superoxide anion and uncoupling proteins are linked to Alzheimer's disease in mitochondria. Simultaneous disorders of superoxide and uncoupling proteins create the conditions for neuronal oxidative damages. On the one hand, sustained oxidative damage causes neuronal apoptosis and eventually, accumulated neuronal apoptosis, leading to exacerbations of Alzheimer's disease. On the other hand, our study has shown that UCP2 and UCP4 have important impact on mitochondrial calcium concentration of nerve cells, suggesting that their abnormal expression may involve in the pathogenesis of Alzheimer's disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants.

Superoxide activates nucleotide-sensitive mitochondrial proton transport through the uncoupling proteins UCP1, UCP2, and UCP3 (Echtay, K. S., et al. (2002) Nature 415, 1482-1486). Two possible mechanisms were proposed: direct activation of the UCP proton transport mechanism by superoxide or its products and a cycle of hydroperoxyl radical entry coupled to UCP-catalyzed superoxide anion export. ...

متن کامل

Integrative Physiology Transcriptional Upregulation of Mitochondrial Uncoupling Protein 2 Protects Against Oxidative Stress-Associated Neurogenic Hypertension

Key Words: uncoupling proteins Ⅲ mitochondrion Ⅲ peroxisome proliferator-activated receptor Ⅲ oxidative stress Ⅲ blood pressure L iving organisms possess a variety of physiological protective mechanisms to counteract oxidative stress and to restore redox balance. Oxidative damage to cells that results from an imbalance of production over degradation of the reactive oxygen species (ROS), particu...

متن کامل

Mitochondrial superoxide and aging: uncoupling-protein activity and superoxide production.

Mitochondria are a major source of superoxide, formed by the one-electron reduction of oxygen during electron transport. Superoxide initiates oxidative damage to phospholipids, proteins and nucleic acids. This damage may be a major cause of degenerative disease and aging. In isolated mitochondria, superoxide production on the matrix side of the membrane is particularly high during reversed elec...

متن کامل

Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson's disease.

Mitochondrial uncoupling proteins dissociate ATP synthesis from oxygen consumption in mitochondria and suppress free-radical production. We show that genetic manipulation of uncoupling protein-2 (UCP2) directly affects substantia nigra dopamine cell function. Overexpression of UCP2 increases mitochondrial uncoupling, whereas deletion of UCP2 reduces uncoupling in the substantia nigra-ventral te...

متن کامل

L-4F, an apolipoprotein A-1 mimetic, restores nitric oxide and superoxide anion balance in low-density lipoprotein-treated endothelial cells.

BACKGROUND Low-density lipoprotein (LDL) impairs endothelial cell function by uncoupling endothelial nitric oxide synthase (eNOS) activity, which allows superoxide anion (O2*-)) to be generated rather than nitric oxide (*NO). Recent reports indicate that apolipoprotein (apo) A-1 mimetics inhibit the development of atherosclerotic lesions in LDL receptor-null mice. Here we hypothesize that L-4F,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2010